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The maximum angle of attack for unseparated flow over an airfoil of chord c with 
finite nose radius of curvature r is shown to be 0.818(r/c)i. 

1. Introduction 
This paper addresses a part of the problem of aerodynamic stall, namely the 

determination of the critical angle of attack, above which the laminar boundary 
layer separates near the leading edge. 

Any wing will stall a t  sufficiently large angle of attack. Put the other way, any 
reasonably well-designed wing will not stall, and hence will generate lift that 
increases very nearly linearly with angle of attack, for sufficiently small angle of 
attack. Such an increase will continue until the angle of attack reaches the critical 
value at  which stall does occur, namely that in which the point of boundary-layer 
separation on the upper surface moves rapidly forward. The lift reaches a maximum 
near this critical angle of attack, then falls rapidly. 

Much of the wing design methodology has always been about postponing stall to 
as high an angle of attack as possible. The literature is extensive, and will not be 
reviewed here. It is clear that the ‘rounder ’ the nose, the higher the permissible angle 
of attack; sharp-edged wings stall very quickly. So everyone knows that the 
maximum angle of attack (and hence the maximum lift) increases with thickness, or 
more accurately with nose radius of curvature. But a t  what rate ? 

The purpose of the present note is to show theoretically that, a t  least as a 
prediction of laminar leading-edge separation, the appropriate rate of increase is as 
the square root of the nose radius, and specifically that the angle of attack in radians 
at which leading-edge separation first occurs is proportional to the square root of the 
ratio of nose radius to chord, the coefficient of proportionality being about 0.818. An 
equivalent proportionality was described as ‘well-known ’ by Lighthill (1951, p. 209). 

Leading-edge separation usually accompanies stall, but is neither necessary (in 
principle) nor sufficient for its occurrence. For most normal airfoils, it can indeed be 
considered necessary ; catastrophic loss of lift is unlikely to occur until the separation 
point is close to the leading edge. However, for most airfoils, leading-edge separation 
is not quite sufJicient for stall, since reattachment of the separated boundary layer 
can occur, with continued lift generation in a flow with a thin ‘bubble’ on its upper 
surface, up  to higher angles of attack. Hence the present theory tends to 
underestimate the maximum useful angle of attack. 

It is appropriate first to give a quick summary of the way in which this theory 
works. Some of the required extra detail is presented in the following sections, or can 
be extracted from the uniformly valid approximations derived by Lighthill (1951). 

According to thin-airfoil theory, the fluid velocity near the leading edge of an 
airfoil a t  angle of attack OL to a stream U behaves like the inverse square root of 



34 E .  0. Tuck 

distance from that edge. If the airfoil has zero thickness, this infinite velocity is 
inevitable within inviscid fluid theory, and a real fluid would separate immediately 
from such a sharp leading edge. 

On the other hand, if the airfoil has non-zero thickness, with a rounded leading 
edge of radius of curvature r satisfying r < c ,  where c is the chord of the airfoil, then 
the apparent inverse-squarc-root leading-edge singularity simply models high but 
not infinite velocities a t  which the flow passes around the leading edge. Locally, the 
airfoil can be replaced by the parabola which touches its nose. The exact potential 
flow around that parabola can be written down in closed form as a combination of 
the uniform stream U and a ‘turning’ flow whose velocity components vary as the 
inverse square root of distance from the focus of the parabola, and are thus finite on 
its surface, but can be matched in its far field with the apparent singularity of the 
thin-airfoil solution. 

By carrying out this matching explicitly, this local flow can be shown to be 
characterized by a single non-dimensional parameter 

p = a(2c/r)$. (1 .1)  

If the airfoil has camber, it is assumed that a is measured relative to the ‘ ideal ’ angle 
of attack, so that there is no leading-edge singularity when a = 0. Then at p = 0 the 
local flow is symmetric, with its stagnation point a t  the vertex of the parabola, and 
a decreasing pressure everywhere on the parabola’s surface. On the other hand, for 
,8 > 0 the stagnation point moves to the lower surface, and there is a maximum- 
velocity point on the upper surface, followed by a region of increasing pressure. 

We now ask the question whether the laminar boundary layer on the parabola does 
or does not separate in the deceleration region downstream of the maximum-velocity 
point. Certainly it does not separate in the symmetric flow a t  /3 = 0 which has no such 
adverse-pressure zone, and also not for small /I, when the deceleration is gentle, but 
separation is inevitable for sufficiently large p. The critical value of p is 1.157; that 
is, there is no separation for p < 1.157 and separation for /3 > 1.157, or 

a > 0.818(r/c)i. (1.2) 

The actual laminar boundary-layer computation leading to this result is an old one 
(Werle & Davis 1972). However, the identification (1 .1)  of the parameter p with a 
scaled angle of attack has not been made before, and we now derive this result using 
ideas of matched expansions (Van Dyke 1964). 

2. Outer expansion 
We assume the usual conditions for thin-airfoil theory in an ‘outer’ domain whose 

fundamental lengthscale is the chord c .  The airfoil is supposed to have top and 
bottom surfaces 

y = -ax+fc(x)+fl.(x), 0 < x < c ,  (2.1) 

where the angle of attack a, the camberf,(x), and the thickness 2fT are all small 
quantities. The camber function fc(x) is assumed to be bounded together with its 
derivatives, but need not vanish at  the ends. The thickness function fT(x) must 
vanish at  both ends, and its slope must be bounded a t  the trailing end x = c .  
However, at the leading end x = 0, the thickness behaves like the square root of x, 
specifically 

fT(X) = (2rx)++O(x9, x 4 0. (2.2) 
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Now if the fluid velocity is V(Ux+ #), where # is the disturbance velocity potential 
due to  the airfoil, then the linearized boundary condition on the airfoil is 

v=q5x= U[-a+f&(z)ff;.(x)], y = o * .  (2.3) 

The solution of Laplace’s equation subject to (2.3) and suitable conditions at infinity, 
on the wake, and the Kutta condition a t  the trailing edge proceeds in a standard way, 
and the result is that on the airfoil the streamwise disturbance velocity is (Newman 
1977, p. 164 et S e q . )  

The corresponding lift coefficient per unit span is 

We are particularly interested in the behaviour of this thin-airfoil solution near the 
leading edge x = 0, namely from (2.4) to leading order 

We now assume without loss of generality that the integral in (2.6) is zero, i.e. that 
the orientation at zero angle of attack is taken as that ‘ideal’ value (Abbott & von 
Doenhoff 1958, p. 70)  for which there is no leading-edge singularity. If the airfoil is 
cambered, this means that it has non-zero lift a t  zero angle of attack. Thus (2.6) 
reduces simply to 

u --f f ua ($. 
Note that so long as fT(x) satisfies (2.2), the thickness contribution to the x-wise 
leading-edge velocity is bounded for small x, and therefore negligible compared to  the 
inverse-square-root behaviour in (2.7). On the other hand, the thickness distribution 
dominates the y-wise velocity, namely from (2.3) and (2.2) 

v+i.(&-- 
We now turn to  the inner expansion, valid in an ‘ inner ’ domain near the leading 

edge, of lengthscale r ,  where the velocities will match those given by (2.7) and (2.8). 
Before doing that, however, we should note that in such a domain the expected 
orders of magnitude of u and v will be the same as each other, since the fluid particles 
there move in more-or-less circular arcs clockwise around thc nose. If this is so, then 
by comparing (2.7) and (2.8) we must have 01 = O(r /c ) i  or p = O ( l ) ,  where p is the 
parameter defined by (1 .1) .  

3. Inner expansion 
It is appropriate to write down a t  once a non-dimensional one-parameter complex 

velocity potential that  solves the inner problem, and to state its properties, namely 
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with the branch cut to the right along the positive real axis from 2 = 0.5. In  the 
complex 2 = X +  iY plane, the curve 

(22-1)4 = Y + i  (3.2) 
defines the parabola y2 = 2X with unit nose radius of curvature and focus at  2 = 0.5. 
Combining (3.1) and (3.2) shows that the stream function, the imaginary part of 
F(Z), takes the constant value p on this parabola, which therefore can be taken as 
an impermeable boundary surface. 

The flow represented by (3.1) consists of a unit X-directed uniform stream, 
combined with a flow whose velocity components vary as the inverse square root of 
distance from the focus point 2 = 0.5 inside the parabola. The complex velocity is 

~ ’ ( 2 )  = i+(p-i)(22-1)-; (3.3) 

F’(Z) = (Y+p)/(Y+i) (3.4) 
with magnitude Q = ( Y + p ) / ( P +  1);. 

Clearly Q = 0 a t  the stagnation point Y = -p. This result agrees with Lighthill’s 
(1951) equation (45). 

everywhere, and in particular on the parabola’s surface 

As 121 + co on the parabola, 

F’(2) + 1 + (,!?-i)/Y. (3.5) 

Hence the X-wise disturbance velocity tends to kP(2X-i, while the Y-wise 
disturbance velocity tends to f (2X)-; .  

Given all the above properties of the non-dimensional potential F ( Z ) ,  we need 
merely observe that in the present problem, the complex potential UF(x/r + iy/r) 
satisfies all requirements for the inner expansion. That is, it generates as a streamline 
the parabola y2 = 2rx which is the inner limiting form of the airfoil geometry at its 
nose, and its disturbance velocity components tend t o  those given by (2.7) and (2.8) 
as x+ co. 

The whole inner problem is thus parametrized by /3, and only by p. When ,8 is zero, 
or a = 0, the inner flow is symmetric with stagnation a t  the nose and a positive 
pressure coefficient that decays monotonically to  zero downstream. Boundary-layer 
separation is not possible on a symmetric parabola. As soon as we let p > 0, the 
stagnation point moves to the lower surface, and there is a maximum-velocity point 
on the upper surface. Thus, on the upper surface the pressure coefficient reaches a 
negative minimum value (which can easily be seen to be exactly -p2)  at  Y = l/p, 
before increasing toward zero far downstream. When p is large, i.e. for large angle 
of attack, or small nose radius, or sharp leading edges, this pressure minimum is large 
and narrow, and boundary-layer separation is inevitable shortly downstream of it.  

This inner flow was discussed by Van Dyke (1956) and the laminar boundary layer 
on the upper surface of the parabola was computed by Werle & Davis (1972). This 
boundary-layer computation was re-checked as part of the present study, and the 
critical value p = 1.157 for separation appears to be accurate. 

4. Conclusion 
The very simple law suggested here is not a stall prediction, but rather a leading- 

edge separation prediction. It therefore underpredicts the angle of attack for 
maximum lift, as in the NACA airfoil data tabulated in Abbott & von Doenhoff 
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(1958), by factors of about 0.5 to 0.8. However, it may have a role t o  play in 
qualitative airfoil design. 

The present result depends on the leading edge being smooth and rounded. It fails 
where there are sharp-edged leading-edge devices such as slots. Of course this is as 
it should be, since these devices are used precisely in order to do better than rounded 
leading edges can ever do in delaying separation. It should be possible to adapt the 
present inner and outer expansion procedure (cf. Moriarty & Tuck 1989) to enable 
the effect of leading-edge devices to be predicted. 

Another challenging extension would be to compute flows in the angle of attack 
range between that where leading-edge separation first occurs and that where true 
stall occurs and the lift reaches its maximum value. Such flows would have a thin 
circulating separation bubble attached to the upper surface, reminiscent of attached 
cavitation bubbles (Tulin & Hsu 1980) or constant-vorticity ‘Batchelor ’ flows 
(Hurley 1989, p. 397). 
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